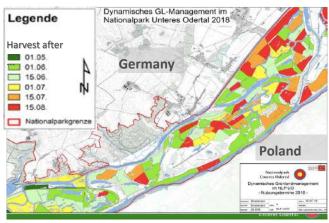


Valorisation of Grassland Biomass by thermochemical Conversion

Thomas Heinrich, Thomas Hoffmann

orizon 2020 [1] Vössing, A. et. al. (2009) Nationalpark-Jahrbuch Unteres Odertal.


Total area: 10,500 ha [1]

4,190 ha managed semi-natural high nature-value grasslands [1]

Collaboration with Lower Oder Valley National Park Association

- Approximately 500 ha annually of late-harvest grass
- Late-harvest grass is not well suitable as feed for animals or for biogas production

Dates for utilisation 2018.

GO-GRASS

Tested Technologies – Farm-scale

Prodana - CarbonTwister®

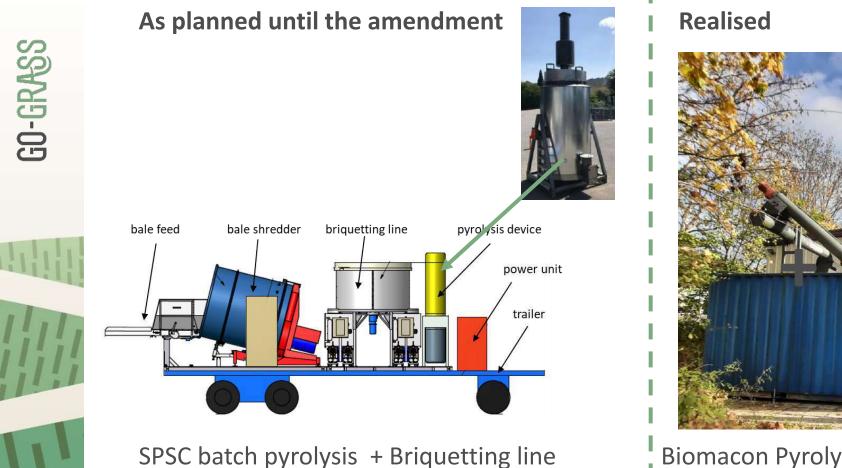
- Untreated

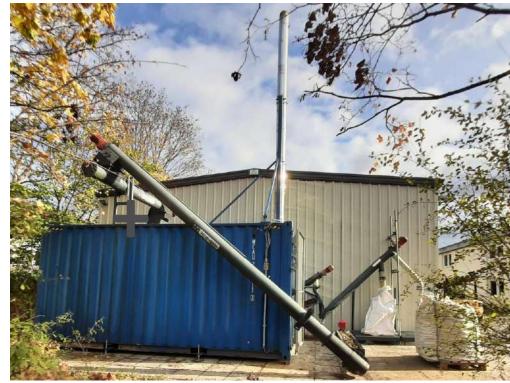
GO-GRASS

- 580 kg grass
- 12,9 % biochar yield

- SPSC VarioL
- Briquettes
- 170 kg grass
- 36,3 % biochar yield

- Pellets
- 2.460 kg grass
- 20,5 % biochar yield





Demonstration Plant

Biomacon Pyrolysis plant from TerraBoGa Project [1].

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement **N° 862674**

[1] Biomacon GmbH, "Betriebsanleitung der Dendromassekarbonisierungsanlage für das Projekt TerraBoGa".

Industriel Production

GO-GRASS

Carbonauten

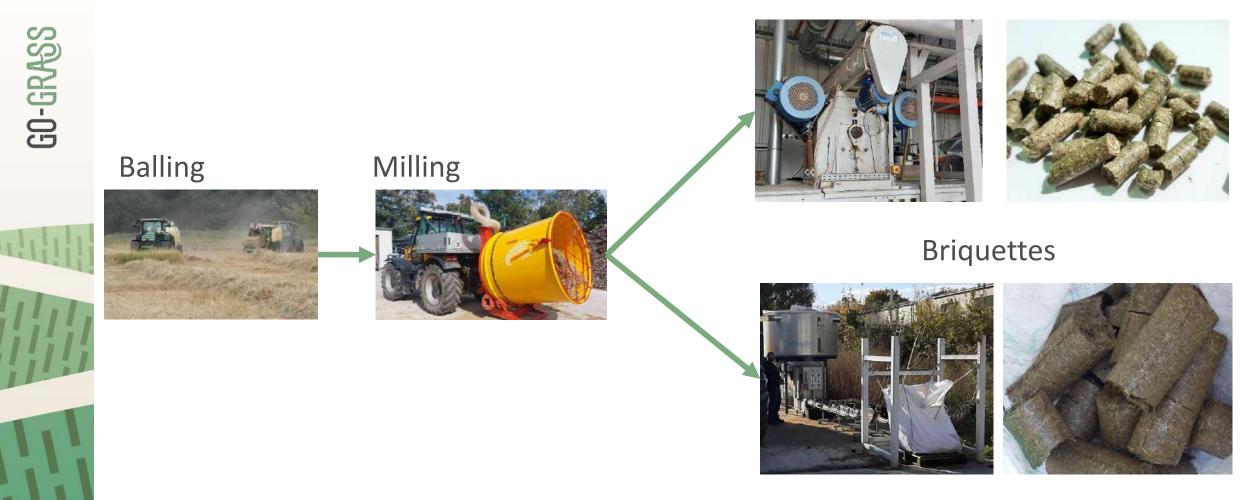
- 12 m³ (about 4 t) Briquttes
- Planned for March 2024

Pyrolysis plant Carbonauten GmbH, Eberswalde [1].

REW Regenis

- 26 m³ (about 13 t) Pellets
- Scheduled for March 2024

Pyrolysis plant REW Regenis, Quakenbrück [2]



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement **N° 862674**

https://carbonauten.com/karbonisierung-und-pyrolyse/, 24.10.2023.
https://regenis.de/, 05.03.2024.

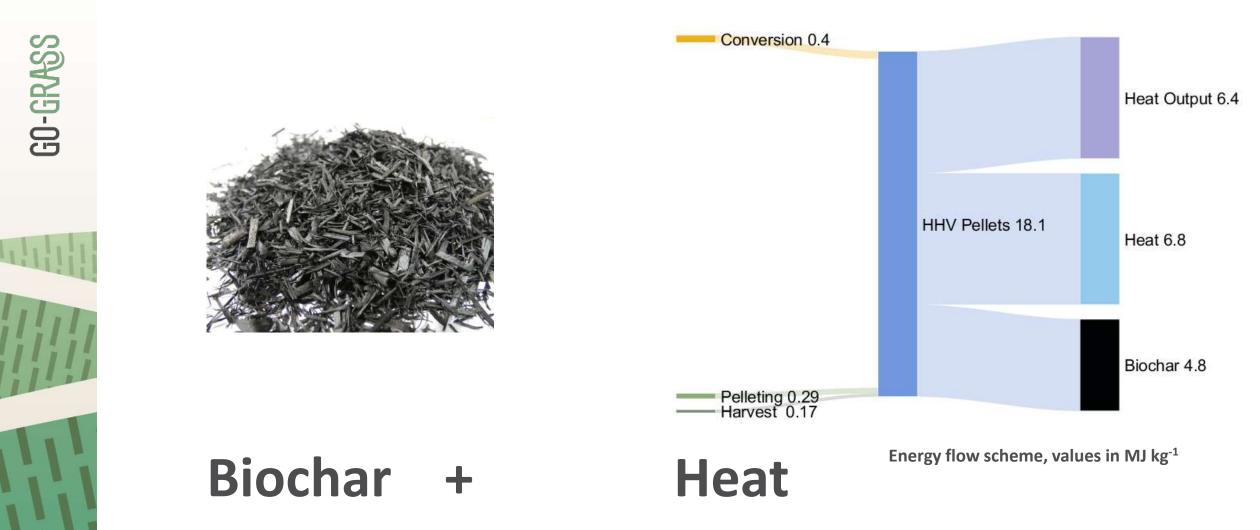
Pellets

Biochar for soil application

- Stable Carbon
 - Ash

GO-GRASS

- High surface area
- Conforms with the European Biochar Certifciate


[mg·kg ⁻¹]	As	Cd	Cr	Cu	Ni	Pb	Zn	Р	K	Mg	Ca	Fe	Ν	Cl	
Biochar	0.99	0.12	3.63	19.09	2.69	< 0.01	147.63	6412,6	29192,8	6467,4	18317,7	1397,1	12563,2	9258,3	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement **N° 862674**

[1] s. Joseph, p. Munroe, "Biochar: a Guide To Analytical Methods"

Cost and Benefit Analysis of biochar use

Table 4: Cost and Benefit analysis of biochar, production and use. Scenarios were calculated based on farm data (electricity and diesel consumption and heat production; infrastructure costs) and estimated assumptions (biochar, and C credits prices).

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Unit
Costs					
Manual labor	5313	5313	5313	5313	€year
Infrastructure					
*Annual amortization	8945	8945	8945	8945	€year
**Annual maintenance	2178	2178	2178	2178	€year
Consumables					
Pelleting	5670	5670	5670	5670	€year
C-sink certificati <u>o</u> n	2000	2000	2000	2000	€year
Electricity	5153	6979	5153	6979	€year
Diesel	364	590	364	590	
Total costs	29623	31085	29623	31085	€year
Benefits					
Biochar savings			24500	24500	€year
Fuel / energy savings	14940	18513	14940	18513	€year
C credits as C sink	3943	5258	3943	5258	€year
Total benefits	18883	23771	43383	48271	€year
Balance	-10740	-7314	<u>+</u> 13760	<u>+</u> 17186	€year

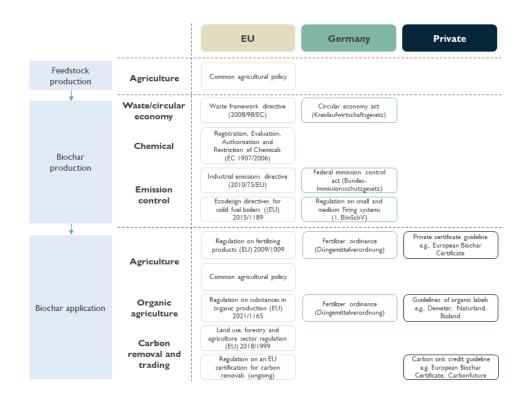
N.	energies	

rticle	
nfluence of thermochemical conversion technologies on	
piochar characteristics from extensive grassland for safe soil	
pplication	8

MDPI

Thomas Heinrich1", Korbinian Kaetzl², Judy Libra¹, Thomas Hoffmann¹

GO-GRASS


GO-GRASS

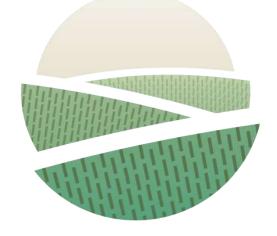
10

- Increasing the quality of agricultural soils
- Generating negative emissions
- Use of local renewable resources for heat generation
- Makes farmers more independent of fossil fuels and their prices
- Bedding material / Compost / Biogas

Barriers

- GO-GRASS -
- **Infrastructure: Pelleting / Briquetting**
 - Ash -
 - Awareness of use of biochar _
 - Specialised machinery/technology for utilisation
 - Legal framework

11



- Many interested parties including followers and other demos for combination -
- Sufficient biomass available as well as stakeholders who would like to try _
- Lack of suitable technologies -
- Further research focused on technology development required -

GO-GRASS

GO-GRASS

Grass-based circular business models for rural agri-food value chains

Kontakt

thoffmann@atbpotsdam.de