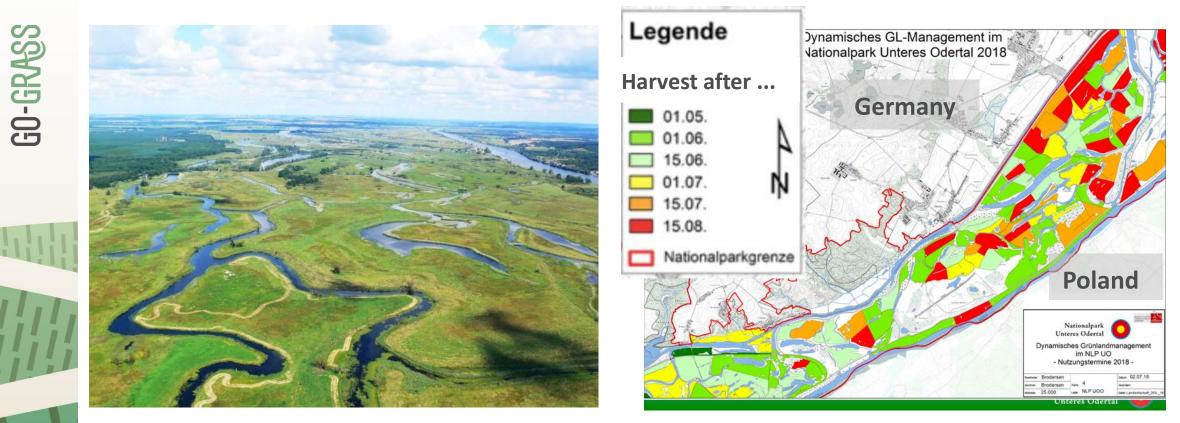


GO-GRASS

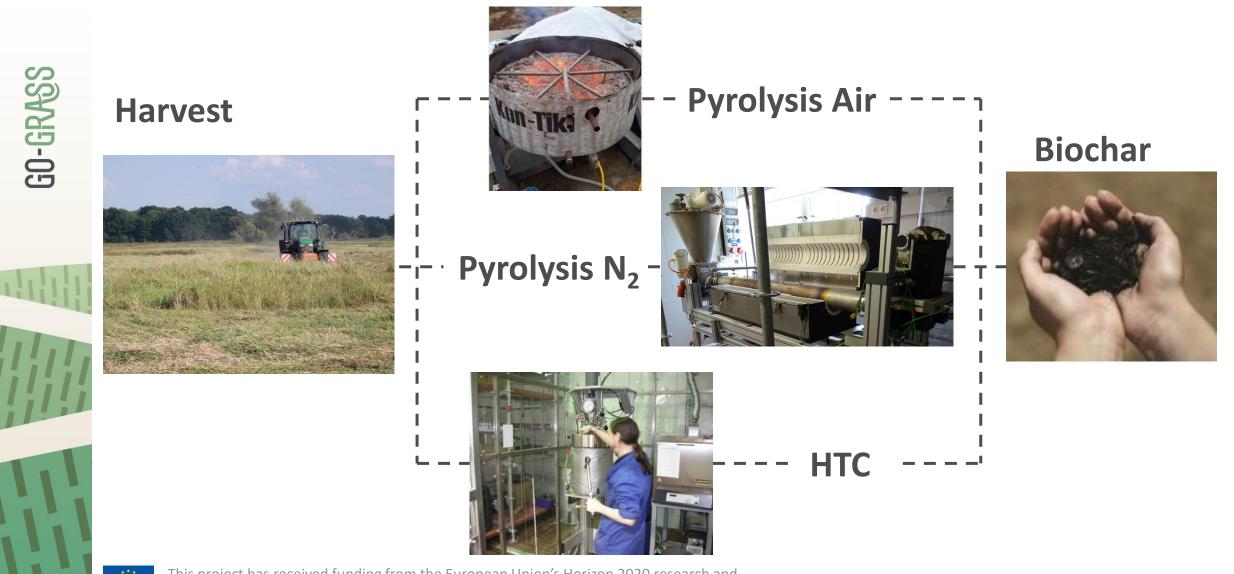
Grass-based circular business models for rural agri-food value chains


Local production of biochar using grassland-cuttings

Thomas Hoffmann (ATB), Thomas Heinrich (ATB, scientist),

Thomas Michael (Lower Oder Valley National Park Association)

Nationalpark Unteres Odertal


Lower Oder Valley National Park

- large grassland areas with polder meadows
- strongly lignified, heterogeneous biomass low nutritional quality

From Biomass to Biochar

***• Th

HTC

GO-GRASS

Hydrothermal carbonisation was developed to replicate the natural coalification process. This is achieved with the aid of water at elevated temperatures and pressures.

- Temperature: 180 280 °C
- Residence time: minutes hours
- Feedstock: wet or dry
- Medium: water
- Pressure: 10 45 bar

Continuous HTC reactor, to be installed at ATB.

Batch HTC reactor at ATB.

Pyrolysis - N₂

Pyrolysis is the thermochemical conversion process that occurs in biomass upon heating in an inert environment.

Slow pyrolysis:

- Temperature: 400 900 °C
- Residence time: minutes
- Feedstock: < 20 wt-% moisture
- Medium: N₂

Rotary kiln pyrolysis reactor at ATB.

GO-GRASS

Pyrolysis - Air

GO-GRASS

When limited amounts of air are provided to hot biomass, a fraction of the pyrolysis products are oxidised, releasing heat to sustain the process.

- Temperature: 500 1200 °C
- Residence time: minutes hours
- Feedstock: < 50 wt-% moisture
- Medium: air
- Combustion of gases and liquid products.

Potential for heat production.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement **N° 862674**

Kon-Tiki kiln at EIP-poject partner.

Carbon-Twister at EIP-poject partner.

Products of Thermochemical conversion

Process	Gases	Liquid	Solid
HTC	CO ₂ , CO, CH ₄ , H ₂ S	Process Water, potentially including phenols	Hydrochar (50 – 80% carbon yield)
Pyrolysis N ₂	CO ₂ , CO, CH ₄ , H ₂	Condensable hydrocarbons	Pyrochar ((30 – 60% carbon yield)
Pyrolysis Air	CO ₂ , CO, CH ₄ , H ₂	Condensable hydrocarbons	Pyrochar ((0 – 60% carbon yield)

GO-GRASS

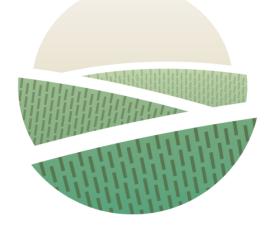
Applications of pyrochar or hydrochar

Technical applications

- fuel
- adsorbent or absorption material

Applications in agricultural area (biochar)

- soil amendment to enhance water holding capacity
- enrichment of C in agricultural soil
- components of fertilizer
- stabalization of anaerobic digestion
- bedding material in stables
- culture substrates (peat substitute)


For the environment

- long term storage of carbon
- reduction of emissions
- recovery of nutritious or chemical elements

GO-GRASS

Grass-based circular business models for rural agri-food value chains

Follow us on : Sin C

Contact

theinrich@atb-potsdam.de

Contact

thoffmann@atb-potsdam.de

Contact

t.michael@nationalparkunteres-Odertal.de